SudoCue Users Forum Index SudoCue Users
A forum for users of the SudoCue programs and the services of SudoCue.Net
 
 FAQFAQ   SearchSearch   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

24 March, 2006

 
Post new topic   Reply to topic    SudoCue Users Forum Index -> Daily Sudoku Nightmare & Archive
View previous topic :: View next topic  
Author Message
David Bryant
Gold Member
Gold Member


Joined: 20 Jan 2006
Posts: 86
Location: Denver, Colorado

PostPosted: Fri Mar 24, 2006 4:52 pm    Post subject: 24 March, 2006 Reply with quote

I've been taking private lessons from someone_somewhere. Smile

Today's puzzle is extremely tough. I found a 9-star constellation ("alpha star" at r8c6), then a 5-star constellation (same alpha star), and finally a 7-star constellation (alpha star at r6c9) before this one finally crumbled.

Great puzzle, Ruud! dcb
Back to top
View user's profile Send private message Send e-mail Visit poster's website
keith
Hooked
Hooked


Joined: 07 Feb 2006
Posts: 35
Location: near Detroit, Michigan, USA

PostPosted: Fri Mar 24, 2006 10:28 pm    Post subject: At the feet of the masters Reply with quote

David,

Maybe I can take lessons from you!

I get to this point:
Code:

+----------------------+----------------------+----------------------+
| 4      369    379    | 269    5      1      | 27     69     8      |
| 69     1      79     | 269    8      4      | 3      5      27     |
| 2      8      5      | 369    7      369    | 1      4      69     |
+----------------------+----------------------+----------------------+
| 369    5      4      | 1      236    236789 | 6789   689    3679   |
| 1      7      39     | 3469   346    3689   | 689    2      5      |
| 8      369    2      | 3679   36     5      | 4      1      3679   |
+----------------------+----------------------+----------------------+
| 7      4      8      | 5      9      26     | 26     3      1      |
| 39     239    6      | 8      1      23     | 5      7      4      |
| 5      23     1      | 3467   2346   2367   | 2689   689    269    |
+----------------------+----------------------+----------------------+


There is one deduction that breaks the puzzle wide open:

R6C2 is not <9>. (And then you have a pair <36> in R6, etc)

How on earth does a normal person make this deduction??

Keith
Back to top
View user's profile Send private message
David Bryant
Gold Member
Gold Member


Joined: 20 Jan 2006
Posts: 86
Location: Denver, Colorado

PostPosted: Fri Mar 24, 2006 11:33 pm    Post subject: The 9 (7?) star constellation Reply with quote

Hi, Keith!

Yes, this is the spot where I found the first big "constellation" in this puzzle. When I posted my message earlier I called it a "9-star constellation," but looking at it again I see how it can be reduced to seven "stars." Anyway, here's how that works.
Code:
+----------------------+----------------------+----------------------+
| 4      369    379    | 269    5      1      | 27     69     8      |
| 69     1      79     | 269    8      4      | 3      5      27x    |
| 2      8      5      | 369    7      369    | 1      4      69     |
+----------------------+----------------------+----------------------+
| 369    5      4      | 1      236    236789 | 6789   689    3679   |
| 1      7      39     | 3469   346    3689   | 689    2      5      |
| 8      369    2      | 3679   36     5      | 4      1      3679   |
+----------------------+----------------------+----------------------+
| 7      4      8      | 5      9      26     | 26     3      1      |
| 39     239    6      | 8      1      23*    | 5      7      4      |
| 5      23     1      | 3467   2346   2367   | 2689   689    269    |
+----------------------+----------------------+----------------------+

The "Alpha Star" is at r8c6. The "target" is r2c9.

A. r8c6 = 2 ==> r7c7 = 2 ==> r1c7 = 7 ==> r2c9 = 2.
B. r8c6 = 3 ==> r4c1 = 3 ==> r5c3 = 9 ==> r2c3 = 7 ==> r2c9 = 2.

So r2c9 has to be "2". If you follow this up and do some coloring on the digit "6" you'll soon reach a point where assuming that r8c6 = 3 causes a contradiction ... that's the second "constellation" I was talking about earlier.

Oh -- I should point out that some of the coloring on "6" is already possible in the grid you posted. There are only two ways to fit a "6" in column 2, and there are also just two ways to fit a "6" in the top right 3x3 box.

r1c2 = 6 ==> r3c9 = 6 ==> r6c9 <> 6
r1c2 <> 6 ==> r6c2 = 6 ==> r6c9 <> 6

You'll be able to extend this pattern after you put the "2" in at r2c9. dcb

PS I don't know how to prove that r6c2 <> 9. Not directly, anyway. And looking at my notes, I see that I still had "9" as a possibility at r6c2 even after I found the third "constellation," which cracked the puzzle wide open for me.
Back to top
View user's profile Send private message Send e-mail Visit poster's website
Ruud
Site Owner
Site Owner


Joined: 30 Dec 2005
Posts: 601

PostPosted: Sat Mar 25, 2006 12:52 am    Post subject: Reply with quote

Hi guys,

always interesting to see how people find different ways to solve these Nightmares.

The fish-style eliminations of digit 6 are a red herring. They accomplish nothing.

This was my intention:
Code:
.---------------------.---------------------.---------------------.
| 4     *369    379   | 269    5      1     | 27   bc69     8     |
| 69     1      79    | 269    8      4     | 3      5      27    |
| 2      8      5     | 369    7     b369   | 1      4      69    |
:---------------------+---------------------+---------------------:
| 369    5      4     | 1      236    236789| 6789   689    3679  |
| 1      7      39    | 3469   346    3689  | 689    2      5     |
| 8     a369    2     |b3679   36     5     | 4      1     c3679  |
:---------------------+---------------------+---------------------:
| 7      4      8     | 5      9      26    | 26     3      1     |
| 39     239    6     | 8      1      23    | 5      7      4     |
| 5      23     1     | 3467   2346   2367  | 2689   689    269   |
'---------------------'---------------------'---------------------'

There are 3 candidates for digit 9 in row 6. I named them a, b, c. Check how each of these 3 candidates kills candidate 9 in *r1c2.

The next step is an XY wing rooted in #r2c1 with pincers in @r1c2 and @r8c1. (didn't we just cause that bivalue in r1c2?)
Code:
.---------------------.---------------------.---------------------.
| 4     @36     379   | 269    5      1     | 27     69     8     |
|#69     1      79    | 269    8      4     | 3      5      27    |
| 2      8      5     | 369    7      369   | 1      4      69    |
:---------------------+---------------------+---------------------:
| 369    5      4     | 1      236    236789| 6789   689    3679  |
| 1      7      39    | 3469   346    3689  | 689    2      5     |
| 8      369    2     | 3679   36     5     | 4      1      3679  |
:---------------------+---------------------+---------------------:
| 7      4      8     | 5      9      26    | 26     3      1     |
|@39    -239    6     | 8      1      23    | 5      7      4     |
| 5     -23     1     | 3467   2346   2367  | 2689   689    269   |
'---------------------'---------------------'---------------------'

r8c2 and r9c2 are the victims here. The remainder of the puzzle can be solved with only a hidden pair.

Cheers,

Ruud.
_________________
“If the human brain were so simple that we could understand it, we would be so simple that we couldn't.” - Emerson M Pugh
Back to top
View user's profile Send private message Send e-mail
David Bryant
Gold Member
Gold Member


Joined: 20 Jan 2006
Posts: 86
Location: Denver, Colorado

PostPosted: Sat Mar 25, 2006 6:00 am    Post subject: There's always more than one way to skin a cat. Reply with quote

Hi, Ruud!

The "template" (aka Nishio) eliminations are interesting. But any logical path to the solution is valid, so long as it works.

Beginning at this position:
Code:
  4    369   379   269    5     1    27    69     8
 69     1    79    269    8     4     3     5    27
  2     8     5    369    7    369    1     4    69
 369    5     4     1    236 236789 6789   689  3679
  1     7    39   3469   346  3689   689    2     5
  8    369    2    379   36     5     4     1    379
  7     4     8     5     9    26    26     3     1
 39    239    6     8     1    23*    5     7     4
  5    23     1   3467  2346  2376  2689   689   269


We have a "7-star constellation" rooted in r8c6.

A. r8c6 = 2 ==> r7c7 = 2 ==> r7c1 = 7 ==> r2c9 = 2.
B. r8c6 = 3 ==> r4c1 = 3 ==> r5c3 = 9 ==> r2c3 = 7 ==> r2c9 = 2.

1. r2c9 = 2 (by DIC); r1c7 = 7 (sole candidate).
2. r1c4 = 2; r2c3 = 7 (unique horizontal).
3. Naked triplet {6, 8, 9} in center right 3x3 box.
4. Coloring eliminates "6" at r4c8, r5c4, r7c7, & r9c7 (it's not really a red herring!).
5. r7c7 = 2; r7c6 = 6 (sole candidate).
6. Coloring in rows 2 & 6 reveals that r1c2 <> 9.

Now a "5-star constellation" reveals that r8c6 <> 3:

Code:
  4    36    39     2     5     1     7    69     8
 69     1     7    69     8     4     3     5     2
  2     8     5    369    7    39     1     4    69
 369    5     4     1    236  23789  689   89    37
  1     7    39    349   346   389   689    2     5
  8    369    2    379   36     5     4     1    37
  7     4     8     5     9     6     2     3     1
 39    239    6     8     1    23*    5     7     4
  5    23     1    347   234   237   89    689   69


r8c6 = 3 ==> r8c1 = 9 ==> r2c1 = 6 ==> r2c4 = 9 ==> r3c6 = 3.

We can't have two "3"s in column 6, therefore r8c6 = 2

7. r8c6 = 2 (sole candidate); r4c5 = 2; r9c2 = 2 (unique horizontal).

Here I found another "7-star constellation." The Alpha Star is r6c9.

Code:
  4    36    39     2     5     1     7    69     8
 69     1     7    69     8     4     3     5     2
  2     8     5    369    7    39     1     4    69
 369    5     4     1     2   3789   689   89    37
  1     7    39    349   346   389   689    2     5
  8    369    2    379   36     5     4     1    37*
  7     4     8     5     9     6     2     3     1
 39    39     6     8     1     2     5     7     4
  5     2     1    347   34    37    89    689   69


A. r6c9 = 7 ==> r4c6 = 7 ==> r9c6 = 3 ==> r3c6 = 9.
B. r6c9 = 3 ==> r6c5 = 6 ==> {3, 9} pair in r5c3 & r6c2 ==> r4c1 = 6;
B1 r6c9 = 3 ==> r4c9 = 7 ==> r6c6 = 3 ==> r3c6 = 9.

And with r3c6 set equal to "9" this stubborn puzzle finally gives up the ghost! dcb
Back to top
View user's profile Send private message Send e-mail Visit poster's website
Ron Moore
Addict
Addict


Joined: 13 Aug 2006
Posts: 72
Location: New Mexico

PostPosted: Fri Oct 20, 2006 4:03 am    Post subject: Answering Keith's Question Reply with quote

Again, this puzzle is long forgotten, I'm sure, but while looking at this thread I saw the answer to the question Keith posed.
Code:

+----------------------+----------------------+----------------------+
| 4      369    379    | 269    5      1      | 27     69     8      |
| 69     1      79     | 269    8      4      | 3      5      27     |
| 2      8      5      | 369    7      369    | 1      4      69     |
+----------------------+----------------------+----------------------+
| 369    5      4      | 1      236    236789 | 6789   689    3679   |
| 1      7      39     | 3469   346    3689   | 689    2      5      |
| 8      369    2      | 3679   36     5      | 4      1      3679   |
+----------------------+----------------------+----------------------+
| 7      4      8      | 5      9      26     | 26     3      1      |
| 39     239    6      | 8      1      23     | 5      7      4      |
| 5      23     1      | 3467   2346   2367   | 2689   689    269    |
+----------------------+----------------------+----------------------+
Quote:

There is one deduction that breaks the puzzle wide open:

R6C2 is not <9>. (And then you have a pair <36> in R6, etc)

How on earth does a normal person make this deduction??

Keith

Maybe Ruud answered the question indirectly, but here's a more direct answer. Consider r1c2.

If r1c2=9, then immediately we have r6c2 <> 9.

If r1c2 is not 9, then r1c2 is 3 or 6, so that r1c2, r2c1, and r8c1 form the XY wing which Ruud mentioned. This eliminates 3 from r8c2 and r9c2. So r9c2=2 and then r8c2=9 and r6c2 <> 9.

Here's another way, which seems simpler to me for Keith's specific question. In column 2, r1c2 and r6c2 are a conjugate pair (strongly linked) for the digit 6. So

r6c2=9 --> r1c2=6 --> r2c1=9

These two placements of 9's would eliminate both 9 candidates in box 7.

Ron
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    SudoCue Users Forum Index -> Daily Sudoku Nightmare & Archive All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group