SudoCue Users
A forum for users of the SudoCue programs and the services of SudoCue.Net

Author Message
Ron Moore

Joined: 13 Aug 2006
Posts: 72
Location: New Mexico

Posted: Fri Dec 22, 2006 5:41 pm    Post subject: 22 Dec 2006 Nightmare: Another Uniqueness Solution

I followed the same solution path as the Sudocue solver to this point:
 Code: .-------------------.---------------------.------------------. | 1      8     49   | 349     349   5     | 2     6     7    | |#49     7     2    | 1       6     49    | 58    358   38   | | 3      6     5    | 8       27    27    | 1     9     4    | :-------------------+---------------------+------------------: |#249    5     1    | 7       2349  249   | 6     38    389  | |#2469   2349  8    | 234-69  1     24-69 | 57    57    39   | |*67+9  ^39   *67+3 |^369     5     8     | 4     2     1    | :-------------------+---------------------+------------------: | 5      1     49   | 249     2479  3     | 789   78    6    | |*67+29  29   *67   | 69      8     1     | 3     4     5    | | 8      349   36   | 5       479   4679  | 79    1     2    | '-------------------'---------------------'------------------'

There are some eliminations which can be made from the "38" UR pattern in r24c89 and the "85-57-78" base pattern in r257c78, but they aren't really needed. A uniqueness argument using the "67" UR pattern in r68c13 (marked with "*") is enough to complete the solution with only basic techniques needed thereafter.

In the jargon of the Solving Guide, there are two "unique subset" possibilities here, one of which must hold, but I'll state the argument in equivalent terms of Almost Locked Sets (ALS's). If the UR pattern is avoided by choosing one of the surplus candidates in row 6, either (9)r6c1 or (3)r6c3, the ALS r6c24 (marked with "^") becomes locked with "6" forced into r6c4. On the other hand, if the UR pattern is avoided by choosing one of (2or9)r8c1, then the ALS r245c1 (marked with "#") becomes locked with "6" forced into r5c1. In either case, both of r5c46 see a "6" (and for that matter, so do cells r6c13). In AIC form:

(6=39)r6c24 - ((3or9)=67)r6c13 - UR - (67=(2or9))r8c13 - (249=6)r245c1 => r5c46, r6c13 <> 6
 Display posts from previous: All Posts1 Day7 Days2 Weeks1 Month3 Months6 Months1 Year Oldest FirstNewest First
 All times are GMT Page 1 of 1

 Jump to: Select a forum SudoCue - the Website----------------Daily Sudoku Nightmare & ArchiveClueless SpecialsClueless ExplosionsWeekly AssassinsTexas Jigsaw KillersSudoku LiteX-FilesDaily WindokuDaily Jigsaw SudokuSolving Guide & GlossarySamurai ContestGeneral Website Comments Sudoku - the Community----------------Help Me! I'm stuck!Solving Techniques & TipsWebsitesSoftwarePuzzlesPublicationsOff-Topic SudoCue - the Software----------------SupportWishlistCommentsReleases
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum